Simple interest
$I=\operatorname{Pr} t$
I interest earned
P amount of mong stated with (Principle)
r interest rate as a decimal
t time in years.
D You invest $\$ 400$ at 3% interest for 2 years. How much interest do you earn?

$$
\begin{array}{ll}
P=400 & I=P r t \\
r=0.03 & =(400)(0.03)(2) \\
t=2 & =24
\end{array}
$$

2) You invest $\$ 1000$ at 2.5% interest for 6 months. How much is your investment worth at the end?

$$
\begin{array}{rlrl}
P & =1000 & I & =\operatorname{Pr} t \\
r & =0.025 & & =(1000)(0.025)(0.5) \\
t=6 \text { months } & & =12.50 \\
& =0.5 \text { years } & A & =P+I \\
& & & \$ 1000+\$ 12.50 \\
& & & \$ 1012.50
\end{array}
$$

3) You invest $\$ 00$ at 4% interest. You earn $\$ 20$ interest. How long was the amorization period?

$$
\begin{aligned}
& P=500 \\
& r=0.04 \\
& I=20
\end{aligned}
$$

$$
\begin{aligned}
\frac{I}{p r}=\frac{p r t}{p r} \Rightarrow \quad t & =\frac{I}{p r} \\
& =\frac{20}{(500 \times 0.04)} \\
& =1
\end{aligned}
$$

4) You earn $\$ 35$ after investing for 2.5 years at 0.25% interest. How much did you invest?

$$
\begin{array}{ll}
t=2.5 \\
r=0.0025 \\
I=35
\end{array} \quad \frac{I}{r t}=\frac{P f t}{f t} \Rightarrow \quad P=\frac{I}{r t}
$$

5) You earn $\$ 125$ on a $\$ 650$ investment. invested for 7 yrs. What was the interest rate?

$$
\begin{aligned}
& I=125 \\
& P=650 \\
& t=7
\end{aligned} \quad \frac{I}{P t}=\frac{P_{r} t}{X t} \Rightarrow r=\frac{I}{P t} \times 100
$$

Compound interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

A actual amount principle and interest together.
P principle
r interest rate as a decimal
t term in years
n compounding period

- how many times compounded each year. yearly $n=1 \quad$ semi-annually $n=2$ quarterly $n=4$ monthly $n=12$ weekly $n=52$
D) You invest $\$ 1000$ at 1.5% interest, compounded quarterly for 2 years. How much is you investment worth after 2 years?

$$
\begin{array}{ll}
2 \text { years? } & A=P\left(1+\frac{r}{n}\right)^{n t} \\
P=1000 & =1000 \times(1+ \\
n=4 & =1030.40 \\
t=2 &
\end{array}
$$

